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Abstract. It is difficult to directly apply conventional significance tests
to compare the performance of network classification models because
network data instances are not independent and identically distributed.
Recent work [6] has shown that paired t-tests applied to overlapping net-
work samples will result in unacceptably high levels (e.g., up to 50%) of
Type I error (i.e., the tests lead to incorrect conclusions that models are
different, when they are not). Thus, we need new strategies to accurately
evaluate network classifiers. In this paper, we analyze the sources of bias
(e.g. dependencies among network data instances) theoretically and pro-
pose analytical corrections to standard significance tests to reduce the
Type I error rate to more acceptable levels, while maintaining reason-
able levels of statistical power to detect true performance differences. We
validate the effectiveness of the proposed corrections empirically on both
synthetic and real networks.

Keywords: Social network analysis, Network classification

1 Introduction

A central methodological issue in machine learning research is to compare the
empirical performance of two learning algorithms and assess the significance of
observed performance differences. Generally, to compare two classification algo-
rithms, the available data is repeatedly partitioned (i.e., sampled) into disjoint
training and test sets (e.g., using cross-validation). Then the algorithms are used
to (1) learn a model from each training set, and (2) apply the learned models
to the appropriate test set for prediction. Evaluation of the test set predictions
(e.g., using accuracy) results in a set of performance measurements, one for each
training/test split, for each algorithm. A hypothesis test is often used to assess
whether the set of observed scores (for each of the two algorithms) are signif-
icantly different—by comparing them to the distribution of scores that would
be expected if both sets were drawn from the same underlying distribution (i.e.,
the null hypothesis that the algorithms perform equivalently).
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Past work on methodology for accurate algorithm evaluation has mainly fo-
cused on data with independent and identically distributed (i.i.d.) instances.
Dietterich [2] showed that some statistical tests, in widespread use at the time,
had a high probability of Type I error due to sampling procedures that resulted
in dependencies among test sets (i.e., they are likely to conclude a significant
difference between algorithms when there is none). Owen [7] observed that de-
pendencies among the hypothesis tests greatly affect the variance of the number
of false discoveries in which a true null hypothesis was rejected. Other work
has shown that the choice of training/test sets can lead to underestimation of
variance in the cross-validation estimator of the generalization error [5, 1].

However, standard approaches to algorithm evaluation become more chal-
lenging in relational learning where the data instances are not independent.
In particular, two characteristics of relational learning and collective classifi-
cation [8] can complicate the application of conventional statistical tests for
comparing classification performance: (1) dependence between related instances
leads to correlated errors and (2) network structure results in dependence be-
tween training and test set samples, which leads to correlated test sets.

Recently Neville et. al [6] conducted an empirical investigation of evaluation
bias when learning from non-i.i.d. observations and proposed a novel sampling
method called network cross-validation (NCV) that can correct for elevated lev-
els of Type I error in network data—but at the expense of decreased statistical
power (i.e., legitimate performance differences may not be detected as signifi-
cant). Note that if a statistical test has biased levels of Type I error, that means
many algorithms which appear to be “significantly different” may in fact have
equivalent performance; if a statistical test has low statistical power, that means
legitimate performance differences between algorithms may not be detected as
significant.

In this paper, we consider the problem of within-network relational learning,
where there are dependencies among data instances and the goal is transductive
network learning—models are learned on a partially labeled network and then
applied to collectively predict the class labels in the remainder of the network
(i.e., the unlabeled portion). Within this setting, we demonstrate how the afore-
mentioned network data characteristics contribute to increased Type I error in
conventional statistical tests. Our analysis shows that both error correlation and
overlapping samples lead to misestimation of the variance that is used in sta-
tistical tests. Based on our analysis, we propose an analytical correction to the
observed variance which can be used to adjust for the bias and reduce Type I
error rates, while maintaining reasonable statistical power. We demonstrate the
effectiveness of the correction on both synthetic and real world data, with sim-
ulated and real classifiers. Although we evaluate the properties of the corrected
significance tests for within-network classification, the findings are also appli-
cable to other learning tasks, where evaluation is conducted with overlapping
samples.
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2 Network classifier evaluation

When comparing the empirical performance of machine learning algorithms,
there are two primary methodological decisions: First, the sampling procedure
dictates how the available data is partitioned into training and test sets for
estimation of algorithm performance. Second, the significance test takes a set of
performance measurements (e.g., accuracy) from the various sampling trials and
makes a determination as to whether observed differences reflect a true difference
in classifier performance or whether it is likely to have occurred by chance alone.

Sampling procedures: Given a single, fully labeled network S of size m,
we consider two sampling procedures to generate training (labeled SL) and test
(unlabeled SU ) sets to evaluate within-network classification algorithms.

The first method is random resampling (RS). It involves random draws with-
out replacement from the sample population (i.e., S) to generate a training/test
split (SL ∪ SU = S;SL ∩ SU = ∅). To produce multiple training/test splits, the
method samples repeatedly from the single network S, which results in over-
lapping test sets (i.e., |SUi

∩ SUj
| ≥ 0). This method has been used extensively

in past work on relational learning algorithms (see the survey in [6] for more
detail).

The second method is NCV, a new sampling approach proposed by [6]. NCV
samples for k disjoint test sets that will be used for evaluation (SU1 ∪ ...∪SUk

=
S;SU1

∩ ... ∩ SUk
= ∅). For each test set, the training set is selected from the

complement of the network (i.e., SLi
⊆ S − SUi

). When the target training set
size is less than the size of the complement, this will leave a set of unlabeled
nodes that are neither in the test set nor the training set. Since these unlabeled
instances will likely be connected to nodes in the test set, collective inference is
run over the full set of unlabeled nodes (i.e., S − SLi), but model performance
is only evaluated on the nodes assigned to the test set (SUi

). Since NCV only
evaluates model performance using disjoint test set instances, it eliminates much
of the dependency due to overlapping test sets and will not suffer the same level
of bias as RS [6].

Significance tests: In within-network learning, after a sampling procedure
has been chosen to create training/test splits within a network, models are
learned from each training set and the learned models are applied for collective
inference over the appropriate test set (i.e., unlabeled portion of the network).
The predictions on the test set nodes are evaluated to estimate algorithm per-
formance (e.g., accuracy). This results in a set of performance measurements,
one for each training/test split, for each algorithm. A significance test is then
used to determine whether the observed performance differences are significantly
different than would be expected if the performance measures were drawn from
the same underlying distribution (i.e., the null hypothesis H0 : the algorithms
perform equivalently).

In this work, we considered both paired and unpaired t-tests for assessments
of significance. We are interested in two characteristics of these tests: (1) Type
I error : the probability of rejecting a true null hypothesis, and (2) Power : the
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probability of rejecting a false null hypothesis (i.e., 1-Type II error). Ideally
the Type I error of a significance test is equal to the chosen significance level
α. If a statistical test has biased levels of Type I error (i.e., greater than the
significance level α), that implies that many of the conclusions drawn from the
test may be incorrect (e.g., algorithms that appear to be different may in fact
have equivalent performance). In contrast, if a statistical test has low statistical
power, that implies that legitimate performance differences may not be detected
as significant.

3 Theoretical Analysis

Here we show theoretically how error correlation and random sampling (i.e.,
without replacement) from a network affects the variance of average network
classification error. To do this, we model the node-level classification errors as
Bernoulli random variables and analytically calculate the mean and variance of
the average error over repeated samples from the same network. Specifically:

– The input population is a set ofm random variablesX (i.e., network size=m).
– The population consists of two types of random variables. There are pm ran-

dom variables of type 1 (i.e., likely errors), which are Bernoulli distributed:
X1
i ∼Bernoulli(q). There are (1−p)m instances of type 0 (i.e., likely correct),

which again are Bernoulli distributed: X0
i ∼Bernoulli( p

(1−p) (1− q) ).

– In the population, there are |L| pairs of “linked” random variables that
are correlated. Let ρ be the average correlation between the linked pairs
((Xi, Xj) ∈ L), otherwise we assume that the Xi are independent.

– We sample n random variables {Xi}ni=1 without replacement from the popu-
lation. Since the sampling is without replacement, the random variables Xis
are not independent.

– Let Zk = 1
n

∑n
i=1Xi be the average value of the r.v.’s in sample k. We

are then interested in the mean and variance of the random variable Zk, as
this corresponds to the estimated error rate of algorithms that is used in
statistical tests.

We note that this setup makes two primary assumptions in order to simplify
the subsequent analysis. First, we assume that the variance in classification errors
throughout the network, across multiple samples, can be represented by the two
types of Bernoulli random variables described above. We designed the parameters
of the Bernoulli variables to keep the expected value of Zk equal to p (i.e.,
the average error), while allowing individual variation of the random variables
across multiple samples: E(Zk) = E

(
1
n

∑n
i=1Xi

)
= E

(
pX1

i + (1− p)X0
i

)
=

pq+ (1− p) p
(1−p) (1− q) = p. Note that if q = 1, then the random variables have

exactly the same values across all samples (if selected) so this would correspond
to sampling from a hypergeometric distribution with pm 1s.

Second, we consider a limited correlation structure in the above model. In
particular, we assume (1) uniform correlation among all the linked nodes, and
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(2) independence among all unlinked nodes in the network. This is a first approx-
imation of the assumptions typical in relational classification models, where the
parameters of directly linked nodes are tied and unlinked nodes are considered
conditionally independent.

Since we have assumed independence among unlinked nodes, rather than con-
ditional independence, the validity of our proposed model depends on whether
the specified covariance matrix is positive definite. Let σi be the standard devi-
ation of Xi, then the entries of the covariance matrix will be:

Cov(Xi, Xj) =


σ2
i i = j

ρ · σiσj (Xi, Xj) ∈ L
0 otherwise

(1)

In the appendix, we specify the conditions under which this matrix will be
positive definite, and thus a valid covariance matrix. In practice, we find that
even when the matrix is not positive definite, it is reasonable to use for the
purposes of correcting evaluation bias.

Given this setup, we can now show the effect of correlation and sampling
without replacement on the variance of Zk. We state the theorems and their
interpretations below and include the proofs in the appendix.

Theorem 1. Correlated variables increase the variance of Zk
Let X be a population of Bernoulli(p) random variables. Assume that a sam-

ple of n variables are drawn randomly from the population. Let ρ be the average
correlation between the Xi that are “linked”, where the probability of linkage is
|L|

n(n−1)
5, and assume that otherwise the Xi are independent. Then the variance

of Zk is:

V ar(Zk) =
1

n
p(1− p)

[
1 + ρ

|L|
n

]
(2)

We refer to this variance of the average error, when there is error correlation,
as V arcorr(Zk). Note that, other than for very specific graph structures (e.g.,
bipartite graphs), if relational data are correlated, autocorrelation is positive and
ρ will be greater than zero. Thus, as ρ or |L| (i.e., number of correlated pairs)
increase, V arcorr(Zk) also increases.

Theorem 2. Sampling without replacement decreases the variance of
Zk

Let X be a population of m Bernoulli random variables as described above,
with pm X1 variables (i.e., type 1) and (1 − p)m X0 variables (i.e., type 0),
where all the Xi are independent. Assume that a sample of n variables are drawn
randomly from the population. Then the variance of Zk is:

V ar(Zk) =
1

n
p(1− p)

[
1− (n− 1)

(m− 1)

(
q − p
1− p

)2
]

(3)

5 Note that n(n− 1) is the number of possible directed edges in a network of n nodes.
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We refer to this variance of the average error, when there is overlap between
samples due to resampling, as V arrs(Zk). Note that when q = p, the variables
correspond to independent Bernoullis across samples and the overall variance re-
duces to the case when each sample is independent: V ar(Zk) = 1

np(1−p). When
q = 1, the random variables have exactly the same value across different samples
and the variance corresponds to sampling from a Hypergeometric distribution:

V ar(Zk) = 1
np(1− p)

[
m−n
m−1

]
.

We can now extend the results of Theorem 2, to show the joint effect of
correlation and sampling without replacement on the variance of Zk.

Theorem 3. Variance of Zk with variable correlation and sampling
without replacement

Let X be a population of m Bernoulli random variables as described above,
with pm X1 variables (i.e., type 1) and (1 − p)m X0 variables (i.e., type 0).
Let ρ be the average correlation between the Xi that are “linked”, where the

probability of linkage is |L|
n(n−1) , and assume otherwise the Xi are independent.

Assume a sample of n variables are drawn randomly from the population. Let
c =
√

1− 2p+ pq. Then the variance of Zk is:

V ar(Zk) =
1

n
p(1− p)

[
1− (n− 1)

(m− 1)

(
q − p
1− p

)2

+

|L|ρ
n(m− 1)

(
1− q
1− p

) [
pmq − q + 2mc

√
pq +mc2 − c2

(1− p)

]]
(4)

We refer to this variance of the average error, when there is both overlap
between samples and error correlation, as V arobs(Zk). This is the variance that
is observed in networks domains when random sampling is used. Finally, we can
use these results to show these two effects combine together to bias conventional
statistical tests for network domains.

Theorem 4. Sampling without replacement and error correlation in-
crease Type I error

Let algorithm A and algorithm B have equal error rates of p on network
datasets drawn from the same domain D. Let Xi be the classification error for
node i and assume that Xi.A and Xi.B (the error made by algorithm A and B
respectively) are Bernoulli distributed as described above, i.e., with probability p,
Xi.A/B is of type 1 and with probability (1− p), Xi.A/B is of type 0. Let ρ be the
average correlation between the Xi, Xj that are linked (i.e., eij ∈ L) and assume
that otherwise the Xi are independent. Assume that k test sets, each of size n,
are drawn from the network of m nodes.

Let ZA = {ZA1 , ZA2 , . . . , ZAk } and ZB = {ZB1 , ZB2 , . . . , ZBk } be the set of av-
erage test set errors (Zj = 1

n

∑
iXi) for test set j = [1, k]. Let c =

√
1− 2p+ pq.

Then an unpaired t-test over ZA and ZB will underestimate the variance of the

null distribution by: ∆ = 1
n
p(1− p)

[
(n−1)
(m−1)

(
q−p
1−p

)2
+ ρ |L|

n

[
1− 1

(m−1)

(
1−q
1−p

)
[
pmq − q + 2mc

√
pq +mc2 − c2

(1−p)

]]]
.
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As ρ (the amount of error correlation) or q (the correlation of node error across
samples) increases, the amount of underestimation (i.e., ∆) increases. This in-
creases the probability of a Type I error in the following way. For unpaired tests,

the t-statistic is: t̂ = Z̄A−Z̄B√
V ar(ZA/B)·

√
2
k

. where Z̄A = 1
k

∑
j Z

A
j is the average of

Zjs in ZA (averaging the average test set errors made by algorithm A over k
tet sets) , Z̄B = 1

k

∑
j Z

B
j is the average of Zjs in ZB, and V ar(ZA/B) is the

pooled sample variance. Since V arobs(Zk) < V arcorr(Zk), the result will be that
t̂obs > t̂corr and thus P (t̂obs|T ) < P (t̂corr|T ), where T is the appropriate t dis-
tribution with dof = 2k−2. Thus using V arobs(Zk) instead of V arcorr(Zk), it is
more likely that the null hypothesis will be rejected even when it holds, and as
such Type I error will increase. This effect will impact paired t-tests in a similar
way, as the decrease in observed variance of ZAj and ZBj will also result in an

underestimate of the difference variance V ar(ZAj − ZBj ), which is used instead
of the pooled sample variance.

4 Analytical correction for bias

Based on the theoretical analysis in Section 3, we propose an analytical adjust-
ment to correct for the bias due to repeated sampling without replacement. We
would like to remove the effects of resampling, and adjust the observed variance
V arobs(Zk) to make it equal to the variance we would expect just due to corre-

lation: V arcorr(Zk) = 1
np(1− p)[1 + ρ |L|n ]. To achieve this, we simply add in the

correction factor ∆ from Theorem 4 above: V arnew(Zk) = V arobs(Zk) + ∆ =
V arcorr(Zk).

Correction for unpaired t-test: The correction can be used in an unpaired
t-test in the following manner. We estimate model error (for each model) in
the conventional manner, recording average performance over multiple test sets.
After computing the variance of the average performances for a particular model
(i.e., V arobs(Zk)), we compute the appropriate ∆ from above and use it to scale
the observed variance. Then the corrected variance V arnew(Zk) is used in place
of the observed variance in the standard formulation of the unpaired t-test.

Correction for paired t-test: For the paired t-test, we can use the correc-
tion to rescale each observed value before computing the differences and vari-
ance. The idea is to compute the standardized value with the original variance
(V arobs) and then unstandardize using the corrected variance (V arnew). Let xA

be an observed error value for algorithm A. Let µA be the mean (observed)

error for algorithm A. Let σAobs = (V arAobs)
1
2 be the observed standard devi-

ation of the average performance of algorithm A. Let σAnew = (V arAnew)
1
2 be

the corrected standard deviation of algorithm A. Then the adjustment for each

measured performance value xA is the following: xAc =
[(

xA−µA

σA
obs

)
· σAnew

]
+ µA =(

σA
new

σA
obs

)
xA +

(
1− σA

new

σA
obs

)
µA The same adjustment is then applied to errors for

algorithm B, with appropriate mean and variances. Once all the observed errors
are adjusted, we can then compute the paired t-test in the standard way.
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The correction ∆ requires values for the parameters: n,m, p, q, ρ, |L|. We can
easily calculate n,m, |L| from the properties of the training/test networks used
in a particular evaluation. Also, p, q, ρ can be estimated from the training/test
network evaluations. For the experiments below, we use the average misclassifi-
cation over all instances in a test set for p, the average misclassification for each
instance across multiple test sets for q, and for ρ we use the φ coefficient to mea-
sure the correlation of errors for linked instances in the network (i.e., calculate
φ coefficient from a contingency table that shows the association of prediction
errors of a pair of linked instances). In the following sections we report results for
paired tests only. Experiments with unpaired tests yielded qualitatively similar
results.

5 Experimental results

To investigate the effectiveness of our proposed correction with random resam-
pling (RS-C), for significance tests of network classifiers, we conducted exper-
iments with both simulated and real relational classifiers under varying data
characteristics, using synthetic data and data from the Internet Movie Database
(imdb.com).

We compare the Type I error rates and statistical power of RS, NCV, and
RS-C using paired t-tests. In all the experiments, both Type I error rates and
statistical power rates were averaged over 500 (simulated) or 50 (synthetic/real)
trials. For a given dataset, in each trial we sample from the network, either us-
ing random sampling (RS) or using network cross-validation (NCV), to create
10 training/test splits (subnetworks). Then we learn classifiers (using two com-
peting algorithms A and B) on the training subnetwork and apply the learned
classifiers on its corresponding test subnetwork to measure its performance (e.g.
average error rate). To compare performance, we conducted significant tests
(α = 0.05) to either accept or reject the null hypothesis that the performance
of algorithm A and B are equivalent. When the experiments are designed so
that two learned classifiers have equivalent error rates, any rejection of the null
hypothesis corresponds to a Type I error (i.e., false positive identification of a
difference when it does not exist). However, when the two classifiers perform dif-
ferently, a rejection of the null hypothesis represents the statistical power of the
test (i.e., true positive identification of a difference when it exists). We calculate
and report the proportion of trials for which the null hypothesis was rejected
(i.e. Type I error or power in its corresponding experimental setup).

5.1 Experiments with simulated classifiers

Here we replicate the experiments of [6] to analyze test characteristics with sim-
ulated classifiers. We simulate the correlated errors observed in real network
classifiers by dividing data instances into disjoint groups and assigning “clas-
sification errors” such that errors are correlated among the instances within a
group. We simulate two group-based classifiers A and B, ensuring that A and B
have the same error rate (p) while still making different kinds of errors (i.e., A
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misclassifies different groups from B). Each trial utilizes datasets with default
parameters m = 300, p = 0.1, and q = 0.9.
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Fig. 1. Type I error and power experiments on synthetic data with simulated classifiers.
(Left) Type I error as proportion of labeled data increases. (Right) Statistical power
as the difference between classifiers increases.

Figure 1(a) shows the effects of varying the proportion of labeled data for
training. In these experiments, algorithms A and B have equal error rates of
p = 0.1 so rejecting the null hypothesis corresponds to a Type I error. For RS,
the Type I error rate increases as propLabeled decreases. This result is expected
since the degree of overlap between test sets increases as the number of unlabeled
instances increases. Since NCV disallows overlapping test sets by design, it is
not susceptible to this problem, achieving uniformly low Type I error rates. The
corrected test, RS-C, exhibits a further reduction in type I error over NCV since
it accounts for error correlation as well as test set overlap.

Figure 1(b) shows the statistical power of the tests when the difference in
error rates between A and B is varied (propLabeled = 0.3). In this case, since the
algorithm error rates are different, a rejection of the null hypothesis corresponds
to a true positive. RS has the highest statistical power overall, but when its high
Type I error rates are taken into account, RS has little practical utility. RS-C, on
the other hand, is able to maintain low Type I error while achieving a reasonable
amount of statistical power. For example when there is a 4% difference in error
rates, RS-C will be able to detect it 80% of the time. NCV has substantially
lower statistical power—it will only be able to detect a 4% difference 20% of the
time.

5.2 Experiments with real classifiers
To further investigate RS-C, we compare the collective classification models used
in [6]: weighted-vote relational neighbor (wvRN) [4] and network-only Bayes
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classifier (nBC) [4]. For both models, we use relaxation labeling for collective
inference. To estimate Type I error, we handicap the better performing model
(wvRN) until the performance difference between the models is negligible (i.e.,
≤ 0.005). This is achieved by randomly selecting b% of the wvRN’s predictions
and perturbing those probabilities toward the opposite class. We searched for
a value of b that resulted in a performance difference of ≤ 0.005 between the
two models on a separate set of calibration networks. To estimate statistical
power, we handicap the worse performing model (nBC) to increase the perfor-
mance difference between the two models. We used b = [0.025, 0.075, 0.15, 0.3]
and measured the resulting performance difference, which is reported in Fig-
ure 2(b) and 3(b).

Results on synthetic data: In this set of experiments, we use synthetic
datasets as described in [6]. The generated networks have size m = 300 with
average autocorrelation= 0.40 and class prior P (+) = 0.70. The data is de-
signed so that wvRN and nBC will make classification errors on different nodes.
To measure Type I error rates and power of the statistical tests, we used four
synthetic networks (in addition a set of 50 calibration networks).
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Fig. 2. Type I error and power experiments on synthetic data with real classifiers.
(Left) Type I error as proportion of labeled data increases. (Right) Statistical power
as the difference between classifiers increases.

Figure 2(a) plots the Type I error rates for three statistical tests. Notably,
the level of Type I error exhibited by RS-C is significantly lower than that of
RS (> 50% reduction in error). RS-C Type I error is also slightly lower than
that of NCV. Figure 2(b) plots the power of each statistical test on networks
with 30% labeled nodes. Here we observe, that RS-C again achieves much higher
power than NCV. This is due to its use of larger test sets sizes—after correcting
for overlap, the effective sample size is still larger than the disjoint sets used in
NCV. For example, on a network of 300 nodes with 30% labeled nodes, RS-C
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uses test set sample of 210 nodes while NCV only use a test set of 30 nodes
(because of 10 cross validation). Note that the test set of 210 nodes in RS-C
are not independent sample. The overlap correction will adjust its sample size
downward, but the effective sample size of RS-C will still be larger than 30.

Results on real data: In the second set of experiments, we use data from the
Internet Movie Database (IMDB). We collected a sample of 1,543 movies released
in the United States between 2003 and 2007, with their associated producers
and studios. We create six disjoint network samples using stratified sampling by
studios. Within each partition, we created links among movies with a common
producer. The resulting networks have an average size of 257 nodes and the
movies have average degree of 16. The classification task is to predict whether
the movie will make more than $60mil in total box office receipts. The average
autocorrelation in these networks is 0.35.
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Fig. 3. Type I error and power experiments on real data (IMDB) with real classifiers.
(Left) Type I error as proportion of labeled data increases. (Right) Statistical power
as the difference between classifiers increases.

Figure 3(a) and 3(b) show the Type I error and statistical power for each test
respectively. The relative performance of the statistical tests is similar across
the synthetic data and the real network data. RS-C has Type I error rates
comparable to NCV and significantly lower than RS. Again RS-C has much
higher power than NCV for detecting the algorithm differences in real network
data.

6 Conclusion

We investigated two biases present in statistical tests for within-network classifi-
cation algorithms: (1) correlated errors among related instances and (2) overlap
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between samples. These biases increase the Type I error to unacceptably high-
levels. To adjust for these biases, we developed analytical corrections to the
empirical estimates of variance. Experiments on real and synthetic data, using
real and simulated classifiers demonstrate that our corrections reduce the Type I
error while maintaining good statistical power. Compared to the network cross-
validation, our corrections result in a significant increase in statistical power.
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Appendix

Conditions for covariance matrix validity

The covariance matrix, denoted as Σ, can be specified in matrix form as:

Σ := ρ(σσT ). ∗A + diag(σ. ∗ σ) (5)

where σ = [σ1, . . . , σi, . . . , σn], Aij = 1 if instance i and j are linked and 0
otherwise, diag has the usual semantics, and .∗ is the pointwise product.

To show the conditions under which the specified covariance matrix is valid,
it is enough to show when Σ is positive definite.
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Lemma 1. Let νmin denote the minimum eigenvalue of matrix H = (σσT ). ∗
A, and ψmin denote the minimum eigenvalue of matrix P = diag(σ. ∗ σ). If ρ
satisfies:

ρ

{
< −ψmin

νmin
if νmin > 0

> −ψmin

νmin
if νmin < 0,

(6)

then the covariance matrix Σ defined above is positive definite.

Proof. To ensure that Σ is positive definite it is sufficient to show that λmin > 0,
where λmin denotes the minimum eigenvalue of Σ. By Weyl’s inequality [3] we
have ρνmin +ψmin ≤ λmin, from which it directly follows that λmin > 0 whenever
(6) is satisfied.

Even though Lemma 1 gives admissible values of ρ to ensure that the co-
variance matrix is positive definite, we observe empirically that other values of
ρ also yield good analytical corrections in practice. In other words, even if the
covariance matrix underlying the correction is not positive definite, our adjust-
ment method is still able to correct for the evaluation bias and correctly assess
significant algorithm differences.

Proof of Theorem 1

Proof.

V ar(Zk) = V ar

(
1

n

n∑
i=1

Xi

)
(7)

=
1

n2

 n∑
i=1

V ar(Xi) +

n∑
i=1

n∑
j 6=i

Cov(Xi, Xj)

 (8)

=
1

n2
(n · p(1− p) + |L|ρ · p(1− p)) (9)

=
1

n
p(1− p)

[
1 + ρ

|L|
n

]
(10)

Proof of Theorem 2

Proof. First we consider the joint probability of two instances, based on sampling
without replacement:

P (Xi=1∧Xj =1)

= P (Xi ∈ X1 ∧Xi = 1)P (Xj ∈ X1 ∧Xj = 1|Xi ∈ X1)+

P (Xi ∈ X1 ∧Xi = 1)P (Xj ∈ X0 ∧Xj = 1|Xi ∈ X1)+

P (Xi ∈ X0 ∧Xi = 1)P (Xj ∈ X1 ∧Xj = 1|Xi ∈ X0)+

P (Xi ∈ X0 ∧Xi = 1)P (Xj ∈ X0 ∧Xj = 1|Xi ∈ X0) (11)

=

[(pm
m
q
)(pm− 1

m− 1
q

)]
+



14 T. Wang, J. Neville, B. Gallagher, and T. Eliassi-Rad[(pm
m
q
)( (1− p)m

m− 1

p

1− p (1− q)
)]

+[(
(1− p)m

m

p

1− p (1− q)
)(

pm

m− 1
q

)]
+[(

(1− p)m
m

p

1− p (1− q)
)(

(1− p)m− 1

m− 1

p

1− p (1− q)
)]

(12)

=
p

(m− 1)

[
pm− q2 − p(1− q)2

(1− p)

]
(13)

Now consider the covariance of two instances, based on sampling without
replacement:

Cov(Xi, Xj)

= E(XiXj)− E(Xi)E(Xj) (14)

= P (Xi = 1 ∧Xj = 1)− p · p (15)

=
p

(m− 1)

[
pm− q2 − p(1− q)2

(1− p)

]
− p2 (16)

= −p(1− p)
(m− 1)

[
(q − p)2

(1− p)2

]
(17)

With the covariance, we can compute the overall variance based on sampling
without replacement:

V ar(Zk) = V ar

(
1

n

n∑
i=1

Xi

)
(18)

=
1

n2

 n∑
i=1

V ar (Xi) +

n∑
i=1

n∑
j=1,j 6=i

Cov(Xi, Xj)

 (19)

=
1

n

[
p(1− p)− (n− 1)

p(1− p)
(m− 1)

[
(q − p)2

(1− p)2

]]
(20)

=
1

n
p(1− p)

[
1− (n− 1)

(m− 1)

(
q − p
1− p

)2
]

(21)

Proof of Theorem 3

Proof. To combine the covariance based on error correlation with the covariance
based on overlap, we need to determine the effect of the correlation on the
conditional probability of a linked instance, i.e., P (Xj = 1|Xi = 1, eij ∈ L). We
can derive this from the relationship between correlation and covariance:

Cov(Xi, Xj |eij ∈ L) = Corr(Xi, Xj |eij)V ar(Xi)
1
2 V ar(Xj)

1
2 (22)

E(XiXj |eij ∈ L)− E(Xi)E(Xj) = ρ · V ar(Xi)
1
2 V ar(Xj)

1
2 (23)

P (Xj |Xi, eij ∈ L) = E(Xj) +
ρ · V ar(Xi)

1
2 V ar(Xj)

1
2

E(Xi)
(24)
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We can then enumerate the conditional probabilities for each of the four possible
worlds for (Xi, Xj):

P (X1
j |X1

i ) = E(X1
j ) +

ρV ar(X1
i )

1
2 V ar(X1

j )
1
2

E(X1
i )

= q + ρ(1− q) (25)

P (X0
j |X1

i ) = E(X0
j ) +

ρV ar(X1
i )

1
2 V ar(X0

j )
1
2

E(X1
i )

(26)

=
p(1− q)

1− p + ρ
(1− q)
(1− p)

√
p(1− 2p+ pq)

q
(27)

P (X1
j |X0

i ) = E(X1
j ) +

ρV ar(X0
i )

1
2 V ar(X1

j )
1
2

E(X0
i )

(28)

= q + ρ

√
q(1− 2p+ pq)

p
(29)

P (X0
j |X0

i ) = E(X0
j ) +

ρV ar(X0
i )

1
2 V ar(X0

j )
1
2

E(X0
i )

(30)

=
p(1− q)

1− p + ρ

(
1− 2p+ pq

1− p

)
(31)

Now we can incorporate these conditional probabilities into the calculation of
P (Xi, Xj) and Cov(Xi, Xj), incorporating both correlation and sampling with-
out replacement. Let c =

√
1− 2p+ pq, then:

P (Xi=1∧Xj =1) (32)

=

[(pm
m
q
)(pm− 1

m− 1
[q +

|L|
n(n− 1)

ρ(1− q)]
)]

+[(pm
m
q
)( (1− p)m

m− 1

[
p

1− p (1− q) +
|L|

n(n− 1)
ρ

(1− q)
(1− p)c

√
p

q

])]
+[(

(1− p)m
m

p(1− q)
1− p

)(
pm

m− 1

[
q +

|L|
n(n− 1)

ρc

√
q

p

])]
+[(

(1− p)m
m

p(1− q)
1− p

)(
(1− p)m− 1

m− 1

[
p(1− q)

1− p +
|L|

n(n− 1)
ρ

(
c2

1− p

)])]
(33)

=
p

(m− 1)

[
pm− q2 − p(1− q)2

(1− p)

]
+

|L|
n(n− 1)

(
pq(1− q)ρ
m− 1

)[
pm− 1 + 2mc

√
p

q
+
mc2

q
− c2

q(1− p)

]
(34)

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj) (35)

= P (Xi = 1 ∧Xj = 1)− p · p (36)

=
p

(m− 1)

[
pm− q2 − p(1− q)2

(1− p)

]
− p2+

|L|
n(n− 1)

(
pq(1− q)ρ
m− 1

)[
pm− 1 + 2mc

√
p

q
+
mc2

q
− c2

q(1− p)

]
(37)
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=
p(1− p)
(m− 1)

[
−
(
q − p
1− p

)2

+
|L|ρ

n(n− 1)

(
1− q
1− p [pmq − q + 2mc

√
pq +mc2 − c2

(1− p)

]]
Now we can compute the overall variance of Zk, with correlation as well as

sampling without replacement:

V ar(Zk) = V ar

(
1

n

n∑
i=1

Xi

)
=

1

n2

 n∑
i=1

V ar (Xi) +

n∑
i=1

n∑
j=1,j 6=i

Cov(Xi, Xj)

 (38)

=
1

n

[
p(1− p)− n(n− 1)

n

p(1− p)
(m− 1)

[(
q − p
1− p

)2

−

|L|ρ
n(n− 1)

(
1− q
1− p

)[
pmq − q + 2mc

√
pq +mc2 − c2

(1− p)

]]]
(39)

=
1

n
p(1− p)

[
1− (n− 1)

(m− 1)

(
q − p
1− p

)2

+

|L|ρ
n(m− 1)

(
1− q
1− p

) [
pmq − q + 2mc

√
pq +mc2 − c2

(1− p)

]]
(40)

Proof of Theorem 4
Proof. The unpaired t-test uses the average (i.e., pooled) variance of ZA and ZB

for the null distribution. Since the error distribution of A and B are equal, the
average is equal to the variance of a single algorithm. When the nodes are repeat-
edly sampled without replacement, we know from Theorem 3 that the observed

variance of Zk will be the following: V arobs(Zk) = 1
np(1−p)

[
1− (n−1)

(m−1)

(
q−p
1−p

)2

+

|L|ρ
n(m−1)

(
1−q
1−p

) [
pmq − q + 2mc

√
pq +mc2 − c2

(1−p)

]
, where c =

√
1− 2p+ pq.

However, when there is error correlation ρ among the instances in the data,
from Theorem 1 we know that the variance of Zk with independent samples

is the following: V arcorr(Zk) = 1
np(1 − p)

[
1 + ρ |L|n

]
. Since the t-test assumes

independent samples, the variance of the null distribution should correspond to
the variance without repeated sampling V arcorr(Zk). If the observed variance
V arobs(Zk) is used in the t-test, it will result in an underestimate of ∆:

∆ = V arcorr(Zk)− V arobs(Zk) (41)

=
1

n
p(1− p)

[
1 + ρ

|L|
n

]
− 1

n
p(1− p)

[
1− (n− 1)

(m− 1)

(
q − p
1− p

)2
]

+[
|L|ρ

n(m− 1)

(
1− q
1− p

)[
pmq−q + 2mc

√
pq +mc2 − c2

(1− p)

]]
(42)

=
1

n
p(1− p)

[
(n− 1)

(m− 1)

(
q − p
1− p

)2

+

ρ
|L|
n

[
1− 1

(m− 1)

(
1− q
1− p

) [
pmq − q + 2mc

√
pq +mc2 − c2

(1− p)

]]]
(43)


